

# **Pyrolysis of heavy** metals contaminated biomass

# CERESis

**ContaminatEd land Remediation through Energy crops for Soil improvement to liquid biofuel Strategies** 

Contributing partners: modelling



This project leading has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006717

### **Paola Giudicianni** 23 April 2024

# CNR - pyrolysis and combustion, CERTH and NTUA -



This project has received funding from the Brazilian Fundação de Amparo à Pesquisa do Estado de Goiás under grant number 202110267000220



Fonds Nouvelles frontières en recherche New Frontiers in Research Fund

This project has received funding from the Canadian New Frontiers in Research Fund under grant number NFRFG-2020-00148 and the Canadian Fond de recherche Société et culture – Québec under grant number 308509



CERTH CENTRE FOR RESEARCH & TECHNOLOGY





National Technical University of







artner



























## SoA of bio-oil production









Fonds de recherche Société et culture Québec 😻 🔮





## SoA of bio-oil production









Fonds de recherche Société et culture Québec 🐏 🔮 **T,** °**C** 



4



## SoA of bio-oil production

Moderat e temperar ture









Fonds de recherche Société et culture Québec 🔹 🔹















Fonds de recherche Société et culture Québec 😻 🔮

## **Progress beyond SoA**







## Choice if of the pyrolysis plant configuration

### Fast Pyrolysis Plants with Capacity Higher than 10 kg/h in 2020

| Heating rate | Company                                                            | TRL                          |     |
|--------------|--------------------------------------------------------------------|------------------------------|-----|
|              | Karlsruhe Institute of<br>Technology/DE<br>BTG-Btl/NL<br>Valmet/FI | 4-5,<br>6-7<br>4-5, 8<br>6-7 | agr |
|              | Versa Renewables LCC/US<br>Fortum/FI<br>Ensyn//CA<br>Red Arrow/US  | 6—7<br>6—7, 8<br>6—7, 8<br>8 |     |
|              | Twence/NL                                                          | 9                            |     |

Mechanisms for heavy metals displacement from the biomass to the  $\bullet$ 

bio-oil

Effect of heating rate of HM devolatilization  $\bullet$ 





High heating rate favors HM devolatilization

Stable combustion becomes more and more challenging





## Choice if of the pyrolysis plant configuration



- Proven technology ullet
- Flexible with respect to particle size and composition ullet
- Good control of residence time and temperature •
- Good mixing characteristics  ${\color{black}\bullet}$
- Good control of particle entrainment  $\bullet$











### Fast Pyrolysis Plants with Capacity Higher than 10 kg/h in 2020

| Karlsruhe Institute of<br>Technology/DE | 4—5,<br>6—7 | agricultural residues                            | twin screw react                               |
|-----------------------------------------|-------------|--------------------------------------------------|------------------------------------------------|
| BTG-Btl/NL                              | 4-5, 8      | agricultural residues, sludge, animal excrements | rotating cone                                  |
| Valmet/FI                               | 6-7         | forest residues                                  | circulating fluidized                          |
| Versa Renewables LCC/US                 | 6-7         | lignocellulosic biomass                          | n.a.                                           |
| Fortum/FI                               | 6-7,8       | forest residues                                  | circulating fluidized                          |
| Ensyn//CA                               | 6-7,8       | forest residues                                  | circulating transport                          |
| Red Arrow/US                            | 8           | n.a.                                             | circulating transporte<br>circulating fluidize |
| Twence/NL                               | 9           | forest residues                                  | rotating cone                                  |















## Desing and construction of the pyrolysis plant











## Desing and construction of the pyrolysis plant

### Operating conditions

Up to 2 kg/h Biomass feeding rate

600 °C Maximum temperature

Up to 18 min Solid residence time



✓ 11 biomasses tested

✓ Tests at different pyrolysis temperature, carrier gas flow rate, solid residence time

















## Effect of temperature: Important knowledge gained

600

69.6

0.53

232

51

Temperature

 to maximize the liquid yield, pyrolysis should be conducted at 500 °C

- To increase liquid quality (reduce water content) temperature should be rised to 600 °C)
- Zn displacement increases greatly from 550 to 600 °C

| Test n°                            | 4        | 5    | 6    |
|------------------------------------|----------|------|------|
| Biomass type                       | Phalaris |      |      |
| Temperature, °C                    | 450      | 500  | 550  |
| Water content, wt%                 | 79.2     | 75.3 | 72.3 |
| Solid content, wt%                 | 0.46     | 0.56 | 0.52 |
| Zn Content, ppm                    | 43       | 43   | 78   |
| Zn displacement in the liquid, wt% | 8        | 8    | 15   |







Fonds de recherche Société et culture Québec 🔮 🍪 Bio-oil Bio-char



the initial biomass contamination level





### Effect of solid residence time: Important knowledge gained 12 Solid residence

time

| V                                           |      |           |     |
|---------------------------------------------|------|-----------|-----|
| Biomass                                     | Н    | H/SRC_UoS | /21 |
| Solid residence time, min                   | 10.1 | 13.3      | 15. |
| $N_2$ flow rate, NI/min                     |      | 12        |     |
| Water content, wt%                          | 63.8 | 65.1      | 62. |
| C, wt%                                      | 19.5 | 18.7      | 19. |
| H, wt%                                      | 9.5  | 9.8       | 9.1 |
| N, wt%                                      | n.d. | n.d.      | n.d |
| O, wt%                                      | 71.0 | 71.5      | 71. |
| Solid content, wt%                          | 0.19 | 0.13      | 0.1 |
| Contaminant content, ppm                    | 619  | 606       | 598 |
| Contaminant displacement in the liquid, wt% | 86   | 84        | 78  |

As solid residence time increases:

 the yield of the liquid remained almost unchanged as well as its water content

Fonds de recherche Société et culture Québec 🐏 🔄

Solid and contaminant content decrease ullet







Bio-oil Bio-char







## Effect of nitrogen flow rate: Important knowledge gained

Vapor residence time

| Biomass                                     | P_(  | CNR  |
|---------------------------------------------|------|------|
| $N_2$ flow rate, NI/min                     | 12   | 9    |
| Solid residence time, min                   | 1    | 3.3  |
| Water content, wt%                          | 43.2 | 52.7 |
| C, wt%                                      | 19.5 | 18.7 |
| H, wt%                                      | 9.5  | 9.8  |
| N, wt%                                      | n.d. | n.d. |
| O, wt%                                      | 71.0 | 71.5 |
| Solid content, wt%                          | 0.69 | 0.31 |
| Contaminant content, ppm                    | 36   | 36   |
| Contaminant displacement in the liquid, wt% | 54   | 50   |

- Low N2 flow rate negatively affects heat transfer in the pyrolysis reactor and in the consensation unit
- Liquid yield has a maximum as N2 flow rate increases
- Water content decreases as N2 flow rate increases

de recherche ciété et culture Québec 🐏 😫













1

## **Reactor flexibility with different feedstocks**



- depends on the biomass composition











- Liquid yield has an average value of **27.0 wt% db** (STD=4.8%).
- The average value of the organics yields is **11.6wt%** (STD= 2.4%)

| VIC_REA         | Test n°                    | Mean | S |
|-----------------|----------------------------|------|---|
| water           | Water content, wt%         | 56.9 |   |
|                 | <b>C, wt%</b>              | 18.7 |   |
|                 | H, wt%                     | 8.9  |   |
| nation<br>curn, | N, wt%                     | 0.0  |   |
|                 | <b>O, wt%</b>              | 72.5 |   |
|                 | HHV (organic phase), MJ/kg | 17.1 |   |
|                 | Solid content, wt%         | 0.13 |   |







# Liquid characterization: different feedstocks, heavy metals concentration and displacement





Take away message To increase liquid quality biomass with lower ash yield should be selected, Pyrolysis temperature can be selected based on the contaminant type and the initial level of the









• The displacement of the contaminants slightly depend on the initial content in the biomass and the biomass type, but is strongly dependent on the type

> Cr exhibits a different lacksquarebehavior, characterized by lower displacement in the liquid than Zn and Ni.





## Gas composition: important knowledge gained

No significant difference in the pyrolysis of different CERESiS biomasses regarding the gas yield (31-37 wt%) composition and HHV (11 MJ/kg) except for hazelnut pruning (44 wt% and 13 MJ/kg)









Fonds de recherche Société et culture Québec 🏼 🔄







## MILD combustion

### MILD COMBUSTION: diluted combustion, recirculation of hot exahusted gases towards fresh



Cavaliere and de Joannon, 2004







Fonds de recherche Société et culture Québec 🐏 😢





## Cyclonic burner for MILD combustion

Height: 50 mm
Section: 200x200 mm<sup>2</sup>
Material: Alumina/Steel



### PARAMETER

Thermal power (P<sub>th</sub>)

Fuel

Preheating temperature (T<sub>in</sub>)

Feeding Configuration

Equivalence ratio (F)

Pressure (P)











### OPERATING RANGE

### Up to 15 kW

Natural gas - NH<sub>3</sub> – Alcohols – Hydrocarbons – Biogas

300 **÷**1300 K

Premixed – Non Premixed

Fuel-Lean to Fuel-Rich

1 atm



## Laboratory-scale combustion 4 surrogate mixtures were selected

| Species         | Rice husks | Com stalks |      | Pine |
|-----------------|------------|------------|------|------|
| Species         | 450        | 450        | 500  | 450  |
|                 |            |            |      |      |
| CO <sub>2</sub> | 67         | 79.2       | 71.4 | 43   |
| СО              | 24         | 15.2       | 16.1 | 39   |
| $CH_4$          | 6          | 2.6        | 8.3  | 9    |
| $C_2H_4$        |            | 2.0        | 4 1  | 2    |
| $C_2H_6$        | 3          | 3.0        | 4.1  | 2    |
| $H_2$           | 0          | 0.0        | 0.0  | 3    |
| LHV (MJ/Kg      | g): 3.73   | 2.56       | 3.79 | 7.29 |







Fonds de recherche Société et culture Québec 🔹 🔹

| n tests of pyrolys                                                       | sis gas: stable 1        |
|--------------------------------------------------------------------------|--------------------------|
| d to take into account the                                               | e feedstock variability  |
| ✓ For LHV>7 MJ/Kg                                                        | combustion without pre   |
|                                                                          | heating                  |
| ✓ For 3 <lhv<7 k<="" mj="" th=""><th>stable combustion with</th></lhv<7> | stable combustion with   |
|                                                                          | heating (730K)           |
| ✓ For LHV < 3 MJ/Kg                                                      | no stable combustion, b  |
|                                                                          | addition, feeding        |
|                                                                          | configuration, heat exch |
|                                                                          | improvement, higher pre  |
|                                                                          | heating levels represent |
|                                                                          | further chances to stab  |
|                                                                          | the process              |
|                                                                          |                          |





### Laboratory-scale combustion tests of pyrolysis gas: emissionso

CO









Fonds de recherche Société et culture Québec 🐼 🏟

NOx







## Conclusions

- Pyrolysis using screw reactor is a viable technology to treat HM contaminated biomass
  - carrier gas flow rate, whereas temperature mainly controls bio-oil contamination
  - contamination and the initial contaminants content in the biomass
- burner operating under MILD combustion regime







Fonds de recherche Société et culture Québec 🐼 🏟



• The most critical parameters affecting the bio-oil yield and quality are temperature and • The choice of the optimal temperature should be done taking into account the type of

• Stable and sustainable combustion of pyrolysis gas was successfully obtained in a cyclonic















This project leading has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006717

# Follow us on:

https://www.ceresis.eu

CERESiS project

## @CERESiS3

## ceresis@exergia.gr



CERTH CENTRE FOR RESEARCH & TECHNOLOGY

Consiglio Nazionale delle Ricerche



National Technical University of





KOKKALIS FOUNDATION



partners

J















This project has received funding from the Brazilian Fundação de Amparo à Pesquisa do Estado de Goiás under grant number 202110267000220



Fonds Nouvelles frontières en recherche New Frontiers in Research Fund

Fonds de recherche Société et culture \* \* Jébec 💀 🐼

This project has received funding from the Canadian New Frontiers in Research Fund under grant number NFRFG-2020-00148 and the Canadian Fond de recherche Société et culture – Québec under grant number 308509



